Features

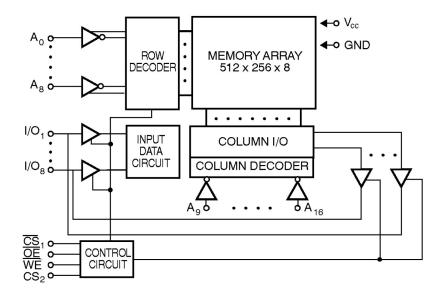
- Operating Voltage: 3.3VAccess Time: 40 ns
- Very Low Power Consumption
 - Active: 160 mW (Max)Standby: 70 µW (Typ)
- Wide Temperature Range: -55°C to +125°C
- MFP 32 leads 400 Mils Width Package
- TTL Compatible Inputs and Outputs
- Asynchronous
- Designed on 0.35µm Process
- No Single Event Latch-up below a LET threshold of 80 MeV/mg/cm²
- Tested up to a Total Dose of 200 Krad (Si) according to MIL STD 883 Method 1019
- Quality grades: QML Q or V with SMD 5962-02501

Description

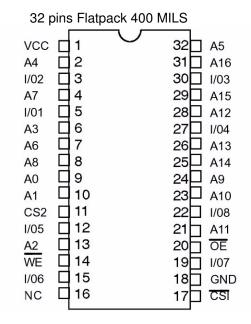
The M65609E is a very low power CMOS static RAM organized as 131,072 x 8 bits. Utilizing an array of six transistors (6T) memory cells, the M65609E combines an extremely low standby supply current with a fast access time at 40 ns. The high stability of the 6T cell provides excellent protection against soft errors due to noise.

The M65609E is processed according to the methods of the latest revision of the MIL PRF 38535 and ESCC 9000.

It is produced on the same process as the MH1RT sea of gates series.


Rad Hard 128K x 8 3.3-volt Very Low Power CMOS SRAM

M65609E



Block Diagram

Pin Configuration

Pin Description

Name	Description
A0 - A16	Address Inputs
I/O1 - I/O8	Data Input/Output
CS₁	Chip Select 1
CS ₂	Chip Select 2
WE	Write Enable
OE	Output Enable
V _{CC}	Power
GND	Ground

Table 1. Truth Table

CS₁	CS ₂	WE	ŌĒ	Inputs/ Outputs	Mode
Н	Х	Х	Х	Z	Deselect/ Power-down
Х	L	Х	Х	Z	Deselect/ Power-down
L	Н	Н	L	Data Out	Read
L	Н	L	Х	Data In	Write
L	Н	Н	Н	Z	Output Disable

Note: L = low, H = high, X = H or L, Z = high impedance.

Electrical Characteristics

Absolute Maximum Ratings

Supply Voltage to GND Potential0.5V + 5V
DC Input Voltage GND - 0.3V to V _{CC} + 0.3V
DC Output Voltage High Z State GND - 0.3V to $V_{\rm CC}$ + 0.3V
Storage Temperature65°C to + 150°C
Output Current Into Outputs (Low)
Electro Statics Discharge Voltage > 500V
(MIL STD 883D Method 3015.3)

*NOTE:

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Military Operating Range

Operating Voltage	Operating Temperature
$3.3V \pm 0.3V$	-55°C to + 125°C

Recommended DC Operating Conditions

Parameter	Description	Min	Тур	Max	Unit
V _{CC}	Supply voltage	3	3.3	3.6	V
Gnd	Ground	0.0	0.0	0.0	V
V _{IL}	Input low voltage	GND - 0.3	0.0	8.0	V
V _{IH}	Input high voltage	2.2	-	V _{CC} + 0.3	V

Capacitance

Parameter	Description	Min	Тур	Max	Unit
C _{IN} ⁽¹⁾	Input low voltage	-	_	8	pF
C _{OUT} ⁽¹⁾	Output high voltage	_	_	8	pF

Note: 1. Guaranteed but not tested.

DC Parameters

DC Test Conditions

Parameter	Description	Minimum	Typical	Maximum	Unit
IIX ⁽¹⁾	Input leakage current	-1	_	1	μΑ
IOZ (1)	Output leakage current	-1	_	1	μΑ
VOL (2)	Output low voltage	-	_	0.4	V
VOH (3)	Output high voltage	2.4	_	_	V

- $\begin{aligned} &\text{Gnd} < \text{Vin} < V_{CC}, \, \text{Gnd} < \text{Vout} < V_{CC} \, \text{Output Disabled}. \\ &V_{CC} \, \text{min. IOL} = 4 \, \text{mA}. \\ &V_{CC} \, \text{min. IOH} = -2 \, \text{mA}. \end{aligned}$
- 2.
- 3.

Consumption

Symbol	Description	65609E-40	Unit	Value
ICCSB (1)	Standby supply current	1.5	mA	max
ICCSB ₁ (2)	Standby supply current	1	mA	max
ICCOP (3)	Dynamic operating current	45	mA	max

- 1.
- 2.
- $$\label{eq:control_control_control} \begin{split} \overline{\underline{CS}}_1 &\geq \text{VIH or } CS_2 \leq \text{VIL and } \overline{CS}_1 \leq \text{VIL}. \\ \overline{CS}_1 &\geq V_{CC} \text{ } 0.3 \text{V or, } CS_2 \leq \underline{\text{Gnd}} + 0.3 \text{V and } \overline{\text{CS}}_1 \leq 0.2 \text{V} \\ F &= 1/T_{\text{AVAV}}, \, I_{\text{OUT}} = 0 \text{ mA}, \, \overline{W} = \overline{\text{OE}} = \text{VIH, Vin} = \text{Gnd or } V_{CC}, \, V_{CC} \text{ max}. \end{split}$$

Write Cycle

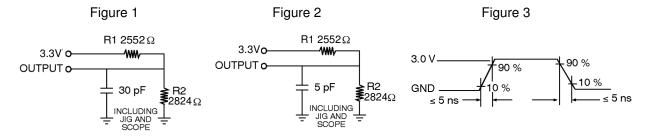
Symbol	Parameter	65609E-40	Unit	Value
t _{AVAW}	Write cycle time	35	ns	min
t _{AVWL}	Address set-up time	0	ns	min
t _{AVWH}	Address valid to end of write	28	ns	min
t _{DVWH}	Data set-up time	18	ns	min
t _{E1LWH}	CS₁ low to write end	28	ns	min
t _{E2HWH}	CS ₂ high to write end	28	ns	min
t _{WLQZ}	Write low to high Z (1)	15	ns	max
t _{WLWH}	Write pulse width	28	ns	min
t _{WHAX}	Address hold from to end of write	3	ns	min
t _{WHDX}	Data hold time	0	ns	min
t _{WHQX}	Write high to low Z (1)	0	ns	min

Note: 1. Parameters guaranteed, not tested, with 5 pF output loading (see Section "AC Test Conditions" Figure 2).

Read Cycle

Symbol	Parameter	65609E-40	Unit	Value
t _{AVAV}	Read cycle time	40	ns	min
t _{AVQV}	Address access time	40	ns	max
t _{AVQX}	Address valid to low Z	3	ns	min
t _{E1LQV}	Chip-select ₁ access time	40	ns	max
t _{E1LQX}	$\overline{\text{CS}}_1$ low to low Z ⁽¹⁾	3	ns	min
t _{E1HQZ}	CS ₁ high to high Z ⁽¹⁾	15	ns	max
t _{E2HQV}	Chip-select ₂ access time	40	ns	max
t _{E2HQX}	CS ₂ high to low Z ⁽¹⁾	3	ns	min
t _{E2LQZ}	CS ₂ low to high Z ⁽¹⁾	15	ns	max
t _{GLQV}	Output Enable access time	12	ns	max
t _{GLQX}	OE low to low Z (1)	0	ns	min
t _{GHQZ}	OE high to high Z (1)	10	ns	max

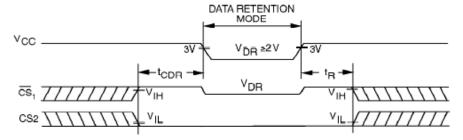
Note: 1. Parameters guaranteed, not tested, with 5 pF output loading (seeSection "AC Test Conditions" Figure 2).



AC Parameters

AC Test Conditions

AC Test Loads Waveforms


Equivalent to: THEVENIN EQUIVALENT

Data Retention Mode

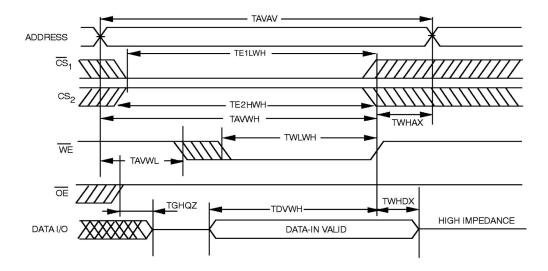
Atmel CMOS RAM's are designed with battery backup in mind. Data retention voltage and supply current are guaranteed over temperature. The following rules ensure data retention:

- 1. During data retention $\overline{\text{CS1}}$ must be held high within V_{CC} to V_{CC} 0.2V or chip select $\overline{\text{CS2}}$ must be held down within GND to GND +0.2V.
- 2. Output Enable (OE) should be held high to keep the RAM outputs high impedance, minimizing power dissipation.
- 3. During power-up and power-down transitions $\overline{CS1}$ and \overline{OE} must be kept between V_{CC} + 0.3V and 70% of V_{CC}, or with BS between GND and GND -0.3V.
- 4. The RAM can begin operation $> t_R$ ns after V_{CC} reaches the minimum operation voltages (3V).

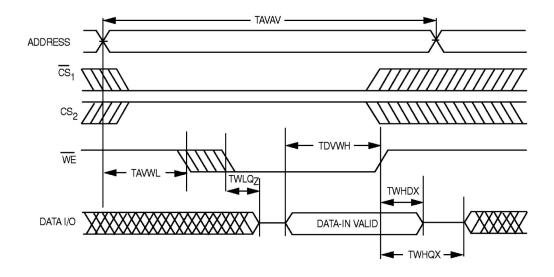
Figure 1. Data Retention Timing

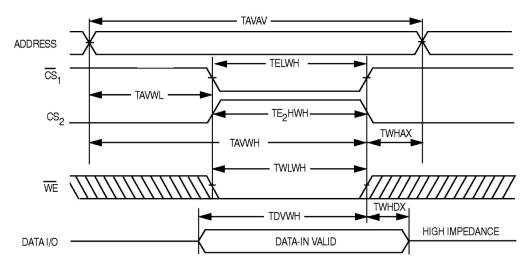
Data Retention Characteristics

Parameter	Description	Min	Typical T _A = 25°C	Max	Unit
V _{CCDR}	V _{CC} for data retention	2.0	-	-	V
T _{CDR}	Chip deselect to data retention time	0.0	-	-	ns
t _R	Operation recovery time	t _{AVAV} ⁽¹⁾	-	-	ns
I _{CCDR1} ⁽²⁾	Data retention current at 2.0V	-	0.010	1.0	mA


Notes: 1. TAVAV = Read Cycle Time

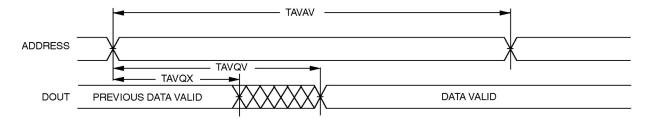
2. $\overline{CS1} = V_{CC}$ or $CS2 = \overline{CS1} = GND$, $V_{IN} = GND/V_{CC}$.



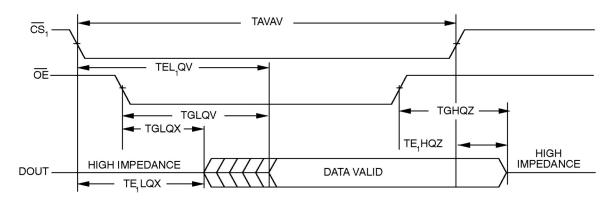

Write Cycle 1. WE Controlled. OE High During Write

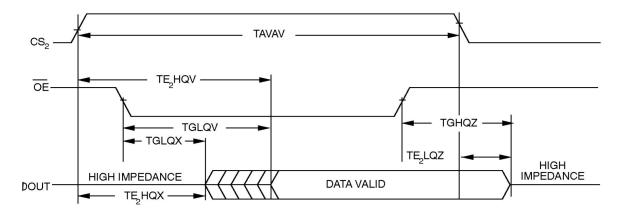
$\underline{\underline{Wr}}$ ite Cycle 2. $\overline{\underline{WE}}$ Controlled. OE Low

Write Cycle 3. CS1 or CS2 Controlled⁽¹⁾



Note: 1. The internal write time of the memory is defined by the overlap of $\overline{CS1}$ LOW and CS2 HIGH and \overline{W} LOW. Both signals must be activated to initiate a write and either signal can terminate a write by going in activated. The data input setup and hold timing should be referenced to the actived edge of the signal that terminates the write. Data out is high impedance if $\overline{OE} = V_{IH}$.



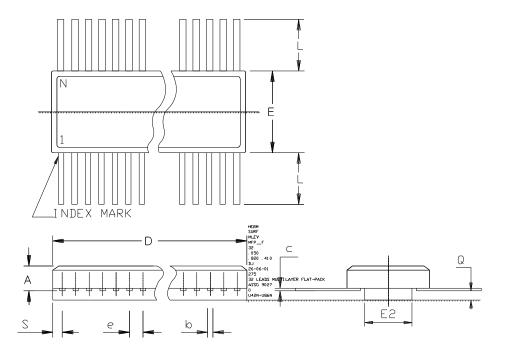

Read Cycle nb 1

Read Cycle nb 2

Read Cycle nb 3

Ordering Information

Part Number	Temperature Range	Speed	Package	Flow
MMDJ-65609EV-40-E	25°C	40 ns	FP32.4	Engineering Samples
5962-0250101QXC	-55 to +125°C	40 ns	FP32.4	QML Q
5962-0250101VXC	-55 to +125°C	40 ns	FP32.4	QML V
5962R0250101VXC	-55 to +125℃	40ns	FP32.4	QML V RHA
SMDJ-65609EV-40SCC	-55 to +125°C	40 ns	FP32.4	ESCC
MM0 -65609EV-40-E ⁽¹⁾	25°C	40 ns	Die	Engineering Samples
MM0 -65609EV-40SV ⁽¹⁾	-55 to +125°C	40 ns	Die	QML V


Note: 1. Contact Atmel for availability.

Package Drawing

32-pin Flat Pack (400 Mils)

	ММ		INCH	
	Min	Mα×	Min	Max
А	1.78	2. 72	. 070	. 107
b	0.38	0. 48	. 015	. 019
С	0.076	0.15	. 003	. 007
D	20. 62	21.03	. 81 2	. 828
E	10.26	10.57	. 404	. 416
E2	6. 96	7. 26	. 274	. 286
е	1.27 BSC		.050 BSC	
L	7. 37	7. 87	. 290	. 31 0
Q	0. 51	0. 76	. 020	. 030
S		1.14		. 045
N	32		32	

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland

Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong

Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18

ASIC/ASSP/Smart Cards

Fax: (33) 2-40-18-19-60

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building

East Kilbride G75 0QR, Scotland

Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France

Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

e-mail

literature@atmel.com

Web Site

http://www.atmel.com

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORYWAR-RANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULARPURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUTOF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes norepresentationsor warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications or product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for useas components in applications intended to support or sustainlife.

©2007 Atmel Corporation. All rights reserved. Atmel[®], logo and combinations thereof, are the trademarks or registered trademarks, of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.